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Abstract. In this paper, we derive an ¯h-deformation of theWN algebra and its quantum Miura
transformation. The vertex operators for this ¯h-deformedWN algebra and its commutation
relations are also obtained.

1. Introduction

Recently, the studies ofq-deformation of some infinite-dimensional algebra—q-deformed
affine algebra [4, 6, 11],q-deformed Virasoro [2, 21] algebra andWN -algebra [2, 3, 9, 10]—
have attracted much attention from physicist and mathematicians. Theq-deformed affine
algebra and its vertex operators provide a powerful method to study the state space and
the correlation function of the solvable lattice model both in the bulk case [16] and the
boundary case [14]. However, the symmetry ofq-deformed affine algebra only corresponds
to the current algebra (affine Lie algebra) symmetry, not to Virasoro-andW -algebra-type
symmetry, in conformal field theory (CFT). Theq-deformation of Virasoro andW algebra,
which it is thought would play the role of symmetry algebra for the solvable lattice model,
has been expected for a long time. Awataet al [2] also constructed theq-deformedWN

algebra (including Virasoro algebra) and the associated Miura transformation from a study
of the Macdonald symmetrical functions. On the other hand, Frenkel and Reshetikhin
[10] succeeded in constructing theq-deformed classicalWN algebra and the corresponding
Miura transformation in an analysis of theUq(ŝlN ) algebra at the critical level. Feigin and
Frenkel [9] then obtained the quantum version of thisq-deformed classicalWN algebra,
i.e. the q-deformedWN algebra. Theq-deformed Virasoro algebra has also been given
by Lukyanov and Pugai [21] in studying the bosonization for the ABF (Andrews–Baxter–
Forrester) model. The bosonization for vertex operators ofq-deformed Virasoro [17, 21]
andWN algebra [1, 2] have been constructed.

However, there exists another important deformation of infinite-dimensional algebra,
which plays an important role in completely integrable field theories (in order to make
a comparison withq-deformation, we call it ¯h-deformation). This deformation for affine
algebra was created by Drinfeld [7] in studies of the Yangian. It has been shown that the
Yangian (DY(ŝl2)) is the dynamical non-Abelian symmetry algebra for the SU(2)-invariant
Thirring model [13, 18, 19, 23]. Naively, the ¯h-deformed affine algebra (or Yangian) would
be expected to play the same role in integrable field theories as theq-deformed affine algebra
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in the solvable lattice model. Naturally, the ¯h-deformed Virasoro and W algebra, which
would play the role of symmetry algebra of some integrable field model, are expected.
We have succeeded in constructing the ¯h-deformed Virasoro algebra in [12] and shown
that thish̄-deformed Virasoro algebra is the dynamical symmetry algebra of the restricted
sine–Gordon model. In this paper, we construct the ¯h-deformedWN algebra (including the
h̄-deformed Virasoro algebra as a special case ofN = 2), the corresponding quantum Miura
transformation and its vertex operators. The ¯h-deformedWN algebra becomes the usual
non-deformedWN algebra [8] with some centre charge which is related to parameterξ ,
whenh̄ −→ 0 andξ andβ are fixed.

This paper is arranged as follows. In section 2, we define the ¯h-deformedWN algebra
and its Miura transformation. The screening currents and vertex operators are derived in
sections 3 and 4.

2. h−-deformation of WN algebra

In this section, we start by defining an ¯h-deformedWN algebra via the quantum Miura
transformation.

2.1. A(1)
N−1-type weight

In this subsection, we shall give some notation about theA
(1)
N−1-type weight which will be

used in the following parts of this paper. Letεµ(1 6 µ 6 N) be the orthonormal basis in
RN , which is supplied with the inner product〈εµ, εν〉 = δµν . Set

εµ = εµ − ε ε = 1

N

N∑
µ=1

εµ. (1)

TheA(1)N−1 type weight lattice is the linear space of

P =
N∑
µ=1

Zεµ.

Note that
∑N

µ=1 εµ = 0. Letωµ(16 µ 6 N − 1) be the fundamental weights

ωµ =
µ∑
ν=1

εν

andαµ the simple roots (16 µ 6 N − 1)

αµ = εµ − εµ+1 = εµ − εµ+1. (2)

An ordered pair(b, a) ∈ P2 is called admissible if only if there existsµ ∈ (16 µ 6 N−1)
such that

b − a = εµ.

An ordered set of four weights

(
c d

b a

)
∈ P4 is called an admissible configuration around a

face if and only if the pairs(b, a), (c, b), (d, a) and(c, d) are all admissible pairs. To each
admissible configuration around a face we shall associate a Boltzmann weight in section 4.
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2.2. Quantum Miura transformation

Let us consider free bosonsλi(t) (i = 1, . . . , N) with a continuous parametert ∈ {R− 0)}
which satisfy

[λi(t), λi(t
′)] = 4sh((N − 1)h̄t/2)sh(h̄ξ t/2)sh(h̄(ξ + 1)t/2)

tsh(Nh̄t/2)
δ(t + t ′) (3)

[λi(t), λj (t
′)] = −4sh(h̄t/2)sh(h̄ξ t/2)sh(h̄(ξ + 1)t/2) esign(j−i)Nh̄t/2

tsh(Nh̄t/2)
δ(t + t ′) i 6= j

(4)

with the deformed parameter ¯h and a generic parameterξ , whereλi(t) is subject to the
following condition:

N∑
l=1

λl(t) elh̄t = 0. (5)

One can check that the restricted condition is compatable with equations (3) and (4).

Remark. The free bosons with continuous parameter in the case ofN = 2, were first
introduced by Jimboet al [15] when studying the massless XXZ mode. This kind of bosons
could be used to construct the bosonization of a Yangian double with centreDY(ŝlN ).

Let us define the fundamental operators3i(β) and the h̄-deformedWN algebra
generatorsTi(β) for i = 1, . . . , N as follows,

3i(β) =: exp

{
−
∫ ∞
−∞

λi(t) eiβt dt

}
: (6)

Tl(β) =
∑

16j1<j2<···<jl6N
: 3j1

(
β + i

l − 1

2
h̄

)
3j2

(
β + i

l − 3

2
h̄

)
. . . 3jl

(
β − i

l − 1

2
h̄

)
:

(7)

andT0(β) = 1. Here :O : stands for the usual bosonic normal ordering of some operator
O such that the bosonsλi(t) with non-negative modet > 0 are in the right. The restricted
condition for bosonsλi(t) in equation (5) results inTN(β) = 1. Actually, the generators
Ti(β) are obtained by the following quantum Miura transformation:

: (eih̄∂β −31(β))(e
ih̄∂β −32(β − ih̄)) . . . (eih̄∂β −3N(β − i(N − 1)h̄)) :

=
N∑
l=0

(−1)lTl

(
β − i

l − 1

2
h̄

)
ei(N−l)h̄∂β . (8)

Remark. eih̄∂β is theh̄-shift operator such that

eih̄∂β f (β) = f (β + ih̄).

If we take the limit ofξ −→ −1, the above generatorsTl(β) reduce to the classical
version of the ¯h-deformedWN algebra, which can be obtained by studying the Yangian
double with centreDY(ŝlN ) at the critical level (i.e.l = −N ). For the case ofN = 2,
the corresponding classical ¯h-deformedW2 (Virasoro) algebra has been given by Dinget al
[5]. Moreover, for the general case of 26 N , the corresponding classical ¯h-deformedWN

algebra has been obtained by Hou and Yang [24]. Thus, we call the limit(ξ −→ −1 with
h̄ andβ fixed) the classical limit.
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Let us consider another limit: ¯h −→ 0 with fixed ξ . Then we have3i(β) =
1 + ih̄χi(β) + o(h̄) and eih̄∂β = 1 + ih̄∂β + o(h̄). Hence the right-hand side of (8) in
this limit becomes

: (ih̄)N (∂β − χ1(β))(∂β − χ2(β)) . . . (∂β − χN(β)) : +o(h̄N) (9)

and we obtain the normally ordered Miura transformation corresponding to the non-deformed
WN algebra introduced by Fateev and Lukyanov [8]. Therefore, the non-deformedWN

algebra (the ordinary one) with the centre charge(N − 1) − (N(N + 1)/ξ(1+ ξ)) can be
obtained by taking this kind of limit. In this sense, we call this limit (¯h −→ 0 with fixed ξ
andβ) the conformal limit.

2.3. Relations of thēh-deformedWN algebra

In order to obtain the commutation relations for bosonic operators, we should make a
comment about regularization. When one computes the exchange relation of bosonic
operators, one often encounters an integral∫ ∞

0
F(t) dt

which is divergent att = 0. Hence we adopt the regularization given by Jimboet al [15].
Namely, the above integral should be understood as the contour integral∫

C

F (t)
log(−t)

2iπ
dt (10)

where the contourC is chosen as the same as that in [15]. From the definition of fundamental
operators3i(β) and the commutation relations of bosonsλi(t), we can derive the following
OPEs (operator product equations):

3i(β1)3i(β2) = φi=i (β2− β1) : 3i(β1)3i(β2) : (11)

3i(β1)3j (β2) = φi<j (β2− β1) : 3i(β1)3i(β2) : i < j (12)

3i(β1)3j (β2) = φi>j (β2− β1) : 3i(β1)3j (β2) : i > j (13)

φi=i (β) =
[
0

(
iβ

Nh̄
− ξ

N

)
0

(
iβ

Nh̄
+ 1− 1

N

)
0

(
iβ

Nh̄
+ 1+ ξ

N

)
0

(
iβ

Nh̄
+ 1

)]
×
[
0

(
iβ

Nh̄

)
0

(
iβ

Nh̄
− 1+ ξ

N
+ 1

)
0

(
iβ

Nh̄
+ 1

N

)
0

(
iβ

Nh̄
+ 1+ ξ

N

)]−1

φi<j (β) =
[
0

(
iβ

Nh̄
− 1

N

)
0

(
iβ

Nh̄
− ξ

N

)
0

(
iβ

Nh̄
+ 1+ ξ

N

)]
×
[
0

(
iβ

Nh̄
− 1+ ξ

N

)
0

(
iβ

Nh̄
+ ξ

N

)
0

(
iβ

Nh̄
+ 1

N

)]−1

φi>j (β) =
[
0

(
iβ

Nh̄
+ 1− 1

N

)
0

(
iβ

Nh̄
+ 1− ξ

N

)
0

(
iβ

Nh̄
+ 1+ 1+ ξ

N

)]
×
[
0

(
iβ

Nh̄
+ 1− 1+ ξ

N

)
0

(
iβ

Nh̄
+ 1+ ξ

N

)
0

(
iβ

Nh̄
+ 1+ 1

N

)]−1

. (14)

To calculate the general OPEs, the integral representation for the0-function is very useful:

0(z) = exp

{∫ ∞
0

(
e−zt − e−t

1− e−t
+ (z − 1) e−t

)
dt

t

}
Re(z) > 0. (15)
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Remark. The above OPEs can be considered as the operator scaling limit ofq-deformed
3i(z) given by Awataet al [2] or by Feigin and Frenkel [9] in studying theq-deformed
WN algebra. The scaling limit is taken as as follows:

z = p−iβ/h̄ q = p−ξ 3i(β) = lim
p−→1

3i(z) ≡ lim
p−→1

3i(p
(−iβ/h̄)). (16)

Theorem 1. The generatorsT1(β) and Tm(β) of the h̄-deformedWN algebra satisfy the
following relations,

f −1
1m (β2− β1)T1(β1)Tm(β2)− f −1

1m (β1− β2)Tm(β2)T1(β1)

= − 2iπ

{
ih̄ξ(ξ + 1)

(
Tm+1

(
β2+ ih̄

2

)
δ

(
β1− β2− i

m+ 1

2
h̄

)
−Tm+1

(
β2− ih̄

2

)
δ

(
β1− β2+ i

m+ 1

2
h̄

))}
(17)

where

f1m(β) =
[
0

(
iβ

Nh̄
+ 1− 1+m

2N

)
0

(
iβ

Nh̄
+ 1+ 1−m

2N

)
×0

(
iβ

Nh̄
− ξ

N
− 1−m

2N

)
0

(
iβ

Nh̄
+ ξ

N
+ 1+m

2N

)]
×
[
0

(
iβ

Nh̄
+ 1− ξ

N
− 1+m

2N

)
0

(
iβ

Nh̄
+ 1+ ξ

N
+ 1−m

2N

)
×0

(
iβ

Nh̄
− 1−m

2N

)
0

(
iβ

Nh̄
+ 1+m

2N

)]−1

. (18)

Proof. Using the OPEs. (11)–(13), we obtain that when Imβ2� Imβ1

3l(β1) : 3j1

(
β2+ i

m− 1

2
h̄

)
. . . 3jm

(
β2− i

m− 1

2
h̄

)
:

is equal to

f1m(β2− β1) : 3l(β1)3j1

(
β2+ i

m− 1

2
h̄

)
. . . 3jm

(
β2− i

m− 1

2
h̄

)
:

if l = jk for somek ∈ {1, . . . , m}; and

f1m(β2− β1)

[(
i
β2− β1

Nh̄
− ξ

N
− 1

2N
+ 2k −m

2N

)(
i
β2− β1

Nh̄
+ ξ

N
+ 1

2N
+ 2k −m

2N

)]
×
[(

i
β2− β1

Nh̄
− 1

2N
+ 2k −m

2N

)(
i
β2− β1

Nh̄
+ 1

2N
+ 2k −m

2N

)]−1

× : 3l(β1)3j1

(
β2+ i

m− 1

2
h̄

)
. . . 3jm

(
β2− i

m− 1

2
h̄

)
:

if jk < l < jk+1. Here and in the following casel < j1 corresponds tok = 0 and the case
l > jm corresponds tok = m. On the other hand, when Imβ2� Imβ1,

: 3j1

(
β2+ i

m− 1

2
h̄

)
. . . 3jm

(
β2− i

m− 1

2
h̄

)
: 3l(β1)

is equal to

f1m(β1− β2) : 3j1

(
β2+ i

m− 1

2
h̄

)
. . . 3jm

(
β2− i

m− 1

2
h̄

)
3l(β1) :
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if l = jk for somek ∈ {1, . . . , m}; and

f1m(β1− β2)

[(
i
β1− β2

Nh̄
− ξ

N
− 1

2N
− 2k −m

2N

)(
i
β1− β2

Nh̄
+ ξ

N
+ 1

2N
− 2k −m

2N

)]
×
[(

i
β1− β2

Nh̄
− 1

2N
− 2k −m

2N

)(
i
β1− β2

Nh̄
+ 1

2N
− 2k −m

2N

)]−1

× : 3j1

(
β2+ i

m− 1

2
h̄

)
. . . 3jm

(
β2− i

m− 1

2
h̄

)
3l(β1) :

if jk < l < jk+1. Noting that

lim
ε−→0+

(
1

x + iε
− 1

x − iε

)
= −2iπδ(x) (19)

we can obtain the commutation relations (17) forT1(β1) and Tm(β2) after some
straightforward calculations. Therefore, we complete the proof of theorem 1. �

In fact, the commutation relations for the generators of the ¯h-deformedWN algebra have
already been defined from the commutation relations of the fundamental operators3i(β) in
equation (6) and the corresponding quantum Miura transformation in (7). So, one can also
derive some similar commutation relations betweenTi(β) andTj (β) with i, j > 1 using the
same method as that in the proof of theorem 1. These commutation relations are quadratic,
and involve products ofTi−r (β) andTj+r (β) with r = 1, . . . ,min(i, j)− 1.

In the case ofN = 2, this h̄-deformedW2 algebra becomes an ¯h-deformed Virasoro
algebra, which we have studied in [12]. Here, we give an example for the caseN = 3.
The generators of this case are

T1(β) = 31(β)+32(β)+33(β) (20)

T2(β) =: 31

(
β + ih̄

2

)
32

(
β − ih̄

2

)
: + : 31

(
β + ih̄

2

)
33

(
β − ih̄

2

)
:

+ : 32

(
β + ih̄

2

)
33

(
β − ih̄

2

)
: . (21)

The commutation relations for these two generators are

f −1
11 (β2− β1)T1(β1)T1(β2)− f −1

11 (β1− β2)T1(β2)T1(β1)

= − 2iπ

{
ih̄ξ(ξ + 1)

(
T2

(
β2+ ih̄

2

)
δ(β1− β2− ih̄)

−T2

(
β2− ih̄

2

)
δ(β1− β2+ ih̄)

)}
(22)

f −1
12 (β2− β1)T1(β1)T2(β2)− f −1

12 (β1− β2)T2(β2)T1(β1)

= − 2iπ

{
ih̄ξ(ξ + 1)

(
δ

(
β1− β2− i

3

2
h̄

)
− δ

(
β1− β2+ i

3

2
h̄

))}
(23)

f −1
22 (β2− β1)T2(β1)T2(β2)− f −1

22 (β1− β2)T2(β2)T2(β1)

= − 2iπ

{
ih̄ξ(ξ + 1)

(
T1

(
β2+ ih̄

2

)
δ(β1− β2− ih̄)

−T1

(
β2− ih̄

2

)
δ(β1− β2+ ih̄)

)}
(24)
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where the coefficient functionfij (β) are

f11(β) =
[
0

(
iβ

Nh̄
+ 1− 1

N

)
0

(
iβ

Nh̄
+ 1

)
0

(
iβ

Nh̄
− ξ

N

)
0

(
iβ

Nh̄
+ ξ

N
+ 1

N

)]
×
[
0

(
iβ

Nh̄
+ 1− ξ

N
− 1

N

)
0

(
iβ

Nh̄
+ 1+ ξ

N

)
0

(
iβ

Nh̄

)
0

(
iβ

Nh̄
+ 1

N

)]−1

f12(β) =
[
0

(
iβ

Nh̄
+ 1− 3

2N

)
0

(
iβ

Nh̄
+ 1− 1

2N

)
×0

(
iβ

Nh̄
− ξ

N
+ 1

2N

)
0

(
iβ

Nh̄
+ ξ

N
+ 3

2N

)]
×
[
0

(
iβ

Nh̄
+ 1− ξ

N
− 3

2N

)
0

(
iβ

Nh̄
+ 1+ ξ

N
− 1

2N

)
×0

(
iβ

Nh̄
+ 1

2N

)
0

(
iβ

Nh̄
+ 3

2N

)]−1

f11(β) = f22(β).

3. Screening currents

In this section, we will consider the screening currents for the ¯h-deformedWN algebra.
First, we introduce some zero mode operators. To each vectorα ∈ P (the A(1)N−1-type
weight lattice defined in section 2.1), we associate operatorsPα andQα which satisfy

[iPα,Qβ ] = 〈α, β〉 (α, β ∈ P). (25)

We shall deal with the bosonic Fock spacesFl,k(l, k ∈ P) generated byλi(−t)(t > 0) over
the vacuum states|l, k〉 .The vacuum states|l, k〉 are defined by

λi(t)|l, k〉 = 0 if t > 0

Pβ |l, k〉 = 〈β, α+l + α−k〉|l, k〉
|l, k〉 = eiα+Ql+iα−Qk |0, 0〉

whereα± are some parameters related toξ

α+ = −
√

1+ ξ
ξ

α− =
√

ξ

1+ ξ (26)

and we also introduceα0,

α0 = 1√
ξ(1+ ξ) . (27)

To each simple rootαj (j = 1, . . . , N − 1), let us introduce two series bosonss±j (t) which
are defined by

s+j (t) =
e(jh̄t/2)

2sh(ξh̄t/2)
(λj (t)− λj+1(t)) (28)

s−j (t) =
e(jh̄t/2)

2sh((1+ ξ)h̄t/2) (λj (t)− λj+1(t)). (29)
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By these simple root bosons, we can define the screening currents as follows:

S+j (β) =: exp

{
−
∫ ∞
−∞

s+j (t) eiβt dt

}
: e−iα+Qαj (30)

S−j (β) =: exp

{∫ ∞
−∞

s−j (t) eiβt dt

}
: e−iα−Qαj . (31)

Then we have:

Theorem 2. The screening currentsS+j (β) satisfy

[: (eih̄∂β −31(β))(e
ih̄∂β −32(β − ih̄)) . . . (eih̄∂β −3N(β − i(N − 1)h̄)) :, S+j (σ )]

= ih̄(1+ ξ){: (eih̄∂β −31(β)) . . . (e
ih̄∂β −3j−1(β − i(j − 2)h̄))Dσ,ih̄ξ

×
(

2π iδ

(
σ − β − i

j + ξ
2

h̄

)
A+j (σ )

)
×eih̄∂β (eih̄∂β −3j+2(β − i(j + 1)h̄)) . . . (eih̄∂β −3N(β − i(N − 1)h̄)) :

(32)

with

A+j (σ ) =: 3j

(
σ − i

j + ξ
2

h̄

)
S+j (σ ) :

and operatorDσ,ih̄ξ being a difference operator with variableσ :

Dσ,ηf (σ ) ≡ f (σ)− f (σ + η).
Proof. From formulae (28), we obtain the following commutation relations:

[λj (t), s
+
j (t
′)] = −2 et (1−j)h̄/2sh((1+ ξ)h̄t/2)

t
δ(t + t ′)

[λj+1(t), s
+
j (t
′)] = 2 e−t (1+j)h̄/2sh((1+ ξ)h̄t/2)

t
δ(t + t ′)

[λj (t), s
+
l (t
′)] = 0 if |j − l| > 1.

From these commutation relations and formula (15), we can derive the following OPEs:

3j(β1)S
+
j (β2) = f +jj (β2− β1) : 3j(β1)S

+
j (β2) : (33)

S+j (β1)3j (β2) = f +jj (β2− β1) : S+j (β1)3j (β2) : (34)

3j+1(β1)S
+
j (β2) = f +j+1j (β2− β1) : 3j+1(β1)S

+
j (β2) : (35)

S+j (β1)3j+1(β2) = f +j+1j (β2− β1) : S+j (β1)3j+1(β2) : (36)

S+j (β1)3l(β2) =: S+j (β1)3l(β2) :=: 3l(β2)S
+
j (β1) : if |j − l| > 1 (37)

and

f +jj (β) =
(

iβ

Nh̄
− ξ

2N
− 1

N
+ j

2N

)/(
iβ

Nh̄
− ξ

2N
+ j

2N
+ ξ

N

)
f +j+1j (β) =

(
iβ

Nh̄
− ξ

2N
+ 1+ ξ

N
+ j

2N

)/(
iβ

Nh̄
− ξ

2N
+ j

2N

)
.

Formula (37) implies that the left-hand side of (32) equals

: (eih̄∂β −31(β)) . . . (e
ih̄∂β −3j−1(β − i(j − 2)h̄))

×[(eih̄∂β −3j(β − i(j − 1)h̄))(eih̄∂β −3j+1(β − i(j)h̄)), S+j (σ )]

×(eih̄∂β −3j+2(β − i(j + 1)h̄)) . . . (eih̄∂β −3N(β − i(N − 1)h̄)) : . (38)
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Therefore, it is sufficient to consider the commutation relation

[: (eih̄∂β −3j(β − i(j − 1)h̄))(eih̄∂β −3j+1(β − i(j)h̄)) :, S+j (σ )].

According to the OPEs (33)–(36), we can derive

[: 3j(β − i(j − 1)h̄)3j+1(β − i(j)h̄) :, S+j (σ )] = 0.

Now we only need to consider the commutation relations between the term3j(β − i(j −
1)h̄) + 3j+1(β − i(j − 1)h̄) and the screening currentS+j (σ ). From the OPEs (33)–(36),
formula (19), noting that

: 3j

(
β − i

j − ξ
2

h̄

)
S+j (β + iξh̄) :=: 3j+1

(
β − i

j − ξ
2

h̄

)
S+j (β) :

and using the same method as that in the proof of theorem 1, we have the following
commutation relation:

[3j(β − i(j − 1)h̄)+3j+1(β − i(j − 1)h̄), S+j (σ )]

= ih̄(1+ ξ)Dσ,ih̄ξ

(
2π iδ

(
σ − β − i

j + ξ
2

h̄

)
: A+j (σ )

)
: .

Therefore, equation (32) has been obtained. �

Using the same method, we have:

Theorem 3. The second series screening currentsS−j (σ ) satisfy

[: (eih̄∂β −31(β))(e
ih̄∂β −32(β − ih̄)) . . . (eih̄∂β −3N(β − i(N − 1)h̄)) :, S−j (σ )]

= ih̄ξ{: (eih̄∂β −31(β)) . . . (e
ih̄∂β −3j−1(β − i(j − 2)h̄))Dσ,−ih̄(1+ξ)

×
(

2π iδ

(
σ − β + i

−j + ξ + 1

2
h̄

)
A−j (σ )

)
×eih̄∂β (eih̄∂β −3j+2(β − i(j + 1)h̄)) . . . (eih̄∂β −3N(β − i(N − 1)h̄)) :

(39)

with

A−j (σ ) =: 3j

(
σ + i

−j + ξ + 1

2
h̄

)
S−j (σ ) : .

Therefore, the screening currentsS±j (β) commute with any ¯h-deformedWN algebra
generators up to total difference.

Remark. In taking the conformal limit (¯h −→ 0 and withξ andβ fixed), the screening
currentsS±j (β) will become the ordinary screening current [8].

Theorem 2 and 3 imply that one can construct the intertwining operators (namely, vertex
operators) for the ¯h-deformedWN algebra using the screening currentsS±j (β). In the next
section we shall construct the vertex operators for the ¯h-deformedWN algebra.
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4. The vertex operators and their exchange relations

In this section, we construct the type I and type II vertex operators for this ¯h-deformedWN

algebra through the two series screening currentsS±j (β). First, we set

π̂µ = α−1
0 Pεµ π̂µν = π̂µ − π̂ν (40)

and

π̂µνFl,k = 〈εµ − εν,−(1+ ξ)l + ξk〉Fl,k. (41)

Note that

e−iα±Qγ π̂σ eiα±Qγ = π̂σ + α−1
0 α±〈σ, γ 〉 (42)

and this formula is very useful for calculating commutation relations of vertex operators.
To each fundamental weight ofωj (j = 1, . . . , N − 1), let us introduce two series bosons
aj (t) anda′j (t) which are defined by

aj =
j∑
k=1

e−h̄(j−2k+1)t/2

2sh(h̄ξ t/2)
λk(t) a′j =

j∑
k=1

e−h̄(j−2k+1)t/2

2sh(h̄(1+ ξ)t/2λk(t) (43)

and also define

Uωj (β) =: exp

{∫ ∞
−∞

aj (t) eiβt dt

}
: eiα+Qωj

U ′ωj (β) =: exp

{∫ ∞
−∞
−a′j (t) eiβt dt

}
: eiα−Qωj . (44)

Because the vertex operators associated with each fundamental weightωj(= 2, . . . , N − 1)
can be constructed from the skew-symmetric fusion of the basic onesUω1(β) andU ′ω1

(β)

[1], it is sufficient to only deal with the vertex operators corresponding to the fundamental
weight ω1. In order to calculate the exchange relations of the vertex operators, we first
derive the following commutation relations:

[aj (t), s
+
j (t
′)] = −sh(h̄(1+ ξ)t/2)

tsh(h̄ξ t/2)
δj,lδ(t + t ′) [aj (t), s

−
j (t
′)] = −1

t
δj,lδ(t + t ′)

[a′j (t), s
−
j (t
′)] = − sh(h̄ξ t/2)

tsh(h̄(1+ ξ)t/2)δj,lδ(t + t
′) [a′j (t), s

+
j (t
′)] = −1

t
δj,lδ(t + t ′)

[a1(t), a1(t
′)] = −sh((N − 1)h̄t/2)sh((1+ ξ)h̄t/2)

tsh(Nh̄t/2)sh(ξh̄t/2)
δ(t + t ′)

[a1(t), a
′
1(t
′)] = −sh((N − 1)h̄t/2)

tsh(Nh̄t/2)
δ(t + t ′)

[a′1(t), a
′
1(t
′)] = − sh((N − 1)h̄t/2)sh(ξh̄t/2)

tsh(Nh̄t/2)sh((1+ ξ)h̄t/2)δ(t + t
′).

From the above relations, and taking the regularization in section 2.3, we can derive the
following exchange relations,

Uω1(β1)Uω1(β2) = r1(β1− β2)Uω1(β2)Uω1(β1)

U ′ω1
(β1)U

′
ω1
(β2) = r ′1(β1− β2)U

′
ω1
(β2)U

′
ω1
(β1)

Uω1(β1)U
′
ω1
(β2) = τ1(β1− β2)U

′
ω1
(β2)Uω1(β1)

S+j (β1)S
+
j+1(β2) = −f (β1− β2, 0)S+j+1(β2)S

+
j (β1)

S−j (β1)S
−
j+1(β2) = −f ′(β1− β2, 0)S−j+1(β2)S

−
j (β1)
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Uω1(β1)S
+
1 (β2) = −f (β1− β2, 0)S+1 (β2)Uω1(β1)

U ′ω1
(β1)S

−
1 = −f ′(β1− β2, 0)S−1 (β2)U

′
ω1
(β1)

Uω1(β1)S
−
1 (β2) = −Uω1(β1)S

−
1 (β2)

U ′ω1
(β1)S

+
1 (β2) = −U ′ω1

(β1)S
+
1 (β2) (45)

where the fundamental functionf (β,w) andf ′(β,w) (which play a very important role in
constructing the vertex operators) are defined by

f (β,w) = sinπ

(
iβ

h̄ξ
− 1

2ξ
− w
ξ

)/
sinπ

(
iβ

h̄ξ
+ 1

2ξ

)
f ′(β,w) = sinπ

(
iβ

h̄(1+ ξ) +
1

2(1+ ξ) +
w

1+ ξ
)/

sinπ

(
iβ

h̄(1+ ξ) −
1

2(1+ ξ)
)

(46)

and

r(β) = exp

{
−
∫ ∞

0

2sh((N − 1)h̄t/2)sh((1+ ξ)h̄t/2)sh(iβt)

tsh(Nh̄t/2)sh(ξh̄t/2)
dt

}
(47)

r ′(β) = exp

{
−
∫ ∞

0

2sh((N − 1)h̄t/2)sh(ξh̄t/2)sh(iβt)

tsh(Nh̄t/2)sh((1+ ξ)h̄t/2) dt

}
(48)

τ(β) = sinπ

(
1

2N
− iβ

Nh̄

)/
sinπ

(
1

2N
+ iβ

Nh̄

)
. (49)

Now let us define the type I vertex operatorsZ′µ(β) and the type II vertex operators
Zµ(β)(µ = 1, . . . , N)

Zµ(β) =
∫
C1

µ−1∏
j=1

dηj U
′
ω1
(β)S−1 (η1)S

−
2 (η2) . . . S

−
µ−1(ηµ−1)

µ−1∏
j=1

f ′(ηj − ηj−1, π̂jµ) (50)

Z′µ(β) =
∫
C2

µ−1∏
j=1

dηj Uω1(β)S
+
1 (η1)S

+
2 (η2) . . . S

+
µ−1(ηµ−1)

µ−1∏
j=1

f (ηj − ηj−1, π̂jµ). (51)

It is easy to see that the vertex operatorsZµ(β) andZ′µ(β) are some bosonic operators
intertwing the Fock spacesFl,k

Zµ(β) : Fl,k −→ Fl,k+εµ Z′µ(β) : Fl,k −→ Fl+εµ,k. (52)

Here we setη0 = β, the integration contourC1 is chosen as the contour corresponding to
the integration variableηj enclosing the polesηj−1 + i 1

2h̄ − ih̄ξn(0 6 n), and the other
integration contourC2 is chosen as the contour corresponding to the integration variableηj
enclosing the polesηj−1− i 1

2h̄− i(1+ ξ)h̄n(06 n).
The constructure form of our type I (type II) vertex operators seems to be similar to that

of the vertex operators for theA(1)N−1 face model given by Asaiet al [1], but with different
bosonic operators and ‘coefficient parts’ functionf (β,w) (f ′(β,w)). Thus the same trick
[1] can be used to calculate the commutation relations for our vertex operators. Using the
method which was presented by Asaiet al in appendix B of the [1], we can derive the
commutation relations for vertex operatorsZµ(β) andZ′µ(β),

Z′µ(β1)Z
′
ν(β2) =

εµ+εν=εµ′+εν′∑
µ′ν ′

Z′µ′(β2)Z
′
ν ′(β1)Ŵ

′
(
π̂ + εµ + εν π̂ + εν ′
π̂ + εν π̂

|β1− β2

)
(53)

Zµ(β1)Zν(β2) =
εµ+εν=εµ′+εν′∑

µ′ν ′
Zµ′(β2)Zν ′(β1)Ŵ

(
π̂ + εµ + εν π̂ + εν ′
π̂ + εν π̂

|β1− β2

)
(54)

Zµ(β1)Z
′
ν(β2) = Z′ν(β2)Z

′
µ(β1)τ (β1− β2) (55)
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and the braid matrices (connection matrices)̂W

(
π̂ + εµ + εν π̂ + εν ′
π̂ + εν π̂

|β
)

and

Ŵ ′
(
π̂ + εµ + εν π̂ + εν ′
π̂ + εν π̂

|β
)

are some functions taking values on operatorsπ̂µν such

as

Ŵ ′
(
π̂ + 2εµ π̂ + εµ
π̂ + εµ π̂

|β
)
= r(β) (56)

Ŵ ′
(
π̂ + εµ + εν π̂ + εν
π̂ + εν π̂

|β
)

= − r(β)
[

sin
π

ξ
sinπ

(
iβ

h̄ξ
− π̂µν

ξ

)/
sinπ

(
π̂µν

ξ

)
sinπ

(
iβ

h̄ξ
+ 1

ξ

)]
(57)

Ŵ ′
(
π̂ + εµ + εν π̂ + εµ
π̂ + εν π̂

|β
)

= r(β)
[

sinπ

(
iβ

h̄ξ

)
sinπ

(
1

ξ
+ π̂µν

ξ

)/
sinπ

(
π̂µν

ξ

)
sinπ

(
iβ

h̄ξ
+ 1

ξ

)]
(58)

Ŵ

(
π̂ + 2εµ π̂ + εµ
π̂ + εµ π̂

|β
)
= r ′(β) (59)

Ŵ

(
π̂ + εµ + εν π̂ + εν
π̂ + εν π̂

|β
)
= −r ′(β)

{[
sin

π

1+ ξ sinπ

(
iβ

h̄(1+ ξ) +
π̂µν

1+ ξ
)}

×
{

sinπ

(
π̂µν

1+ ξ
)

sinπ

(
iβ

h̄(1+ ξ) −
1

1+ ξ
)]}−1

(60)

Ŵ

(
π̂ + εµ + εν π̂ + εµ
π̂ + εν π̂

|β
)
= r ′(β)

{[
sinπ

(
iβ

h̄(1+ ξ)
)

sinπ

(
1

1+ ξ +
π̂µν

1+ ξ
)}

×
{

sinπ

(
π̂µν

1+ ξ
)

sinπ

(
iβ

h̄(1+ ξ) −
1

1+ ξ
)]}−1

. (61)

Therefore, these connection matrices do not commute with the vertex operators and the
exchange relations should be written in the same order as in equations (53) and (54).
Noting that

r(−β)|ξ−→1+ξ = r ′(β)1N(β)

1N(β) = sinπ

(
iβ

Nh̄
+ 1

N

)/
sinπ

(
iβ

Nh̄
− 1

N

)
we find that the matriceŝW

(
π̂ + εµ + εν π̂ + εν ′
π̂ + εν π̂

|β
)

andŴ ′
(
π̂ + εµ + εν π̂ + εν ′
π̂ + εν π̂

|β
)

are related to each other as follows:

Ŵ ′
(
π̂ + εµ + εν π̂ + εν ′
π̂ + εν π̂

| − β
)
|ξ−→1+ξ = 1N(β)Ŵ

(
π̂ + εµ + εν π̂ + εν ′
π̂ + εν π̂

|β
)
.

WhenN = 2, the factor1N(β) = −1, as occurred when studying the ¯h-deformed Virasoro
algebra [12]. If both sides of equations (53) and (54) are acted on the special Fock space
Fl,k, noting thatlµν andkµν

lµν = 〈εµ − εν, l〉 kµν = 〈εµ − εν, k〉
are all integer, we have

Z′µ(β1)Z
′
ν(β2)|Fl,k =

εµ+εν=εµ′+εν′∑
µ′ν ′

Z′µ′(β2)Z
′
ν ′(β1)|Fl,kW ′

(
l + εµ + εν l + εν ′
l + εν l

|β1− β2

)
(62)
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Zµ(β1)Zν(β2)|Fl,k =
εµ+εν=εµ′+εν′∑

µ′ν ′
Zµ′(β2)Zν ′(β1)|Fl,kW

(
k + εµ + εν k + εν ′
k + εν k

|β1− β2

)
(63)

and

W ′
(
l + 2εµ l + εµ
l + εµ l

|β
)
= r(β)

W ′
(
l + εµ + εν l + εν
l + εν l

|β
)

= r(β)
[

sin
π

ξ
sinπ

(
iβ

h̄ξ
+ lµν

ξ

)/
sinπ

(
lµν

ξ

)
sinπ

(
iβ

h̄ξ
+ 1

ξ

)]
W ′
(
l + εµ + εν l + εµ
l + εν l

|β
)

= r(β)
[

sinπ

(
iβ

h̄ξ

)
sinπ

(
− 1

ξ
+ lµν

ξ

)/
sinπ

(
lµν

ξ

)
sinπ

(
iβ

h̄ξ
+ 1

ξ

)]
W

(
k + 2εµ k + εµ
k + εµ k

|β
)
= r ′(β)

W

(
k + εµ + εν k + εν
k + εν k

|β
)

= r ′(β)
{[

sin
π

1+ ξ sinπ

(
iβ

h̄(1+ ξ) −
kµν

1+ ξ
)}

×
{

sinπ

(
kµν

1+ ξ
)

sinπ

(
iβ

h̄(1+ ξ) −
1

1+ ξ
)]}−1

W

(
k + εµ + εν k + εµ
k + εν k

|β
)

= r ′(β)
{[

sinπ

(
iβ

h̄(1+ ξ)
)

sinπ

(
− 1

1+ ξ +
kµν

1+ ξ
)}

×
{

sinπ

(
kµν

1+ ξ
)

sinπ

(
iβ

h̄(1+ ξ) −
1

1+ ξ
)]}−1

.

It can be checked that the Boltzmann weightsW

(
c d

b a
|β
)

andW

(
c d

b a
|β
)

satisfy the

star-triangle equations (or Yang–Baxter equation)∑
g

W

(
d e

c g
|β1

)
W

(
c g

b a
|β2

)
W

(
e f

g a
|β1− β2

)
=
∑
g

W

(
g f

b a
|β1

)
W

(
d e

g f
|β2

)
W

(
d g

c b
|β1− β2

)
(64)

and unitary relation∑
g

W

(
c g

b a
| − β

)
W

(
c d

g a
|β
)
= δbd . (65)

In fact, the Yang–Baxter equation (64) and the unitary relation (65) are direct results of the
exchange relation of the vertex operators in equations (62) and (63) (the associativity of
algebraZµ(β) andZ′µ(β)).
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Remark. In fact, we have constructed the bosonization of the vertex operators for the
trigonometric SOS (solid-on-solid) model ofA(1)N−1 type.

5. Discussions

We have constructed an ¯h-deformedWN algebra and its quantum Miura transformation.
The h̄-deformation of theWN algebra can be obtained by two ways: one can first derive
the classical version of the ¯h-deformedWN algebra by studying the Yangian double with
centreDY(ŝlN ) at the critical level, following Frenkel and Reshetikhin in their study of the
Uq(ŝlN ) at the critical level [10], and then construct the (quantum) ¯h-deformedWN algebra
by quantizing the classical one; another way to construct the ¯h-deformedWN algebra is by
taking some scaling limit of theq-deformedWN algebra such as equation (16). In fact,
the same phenomena also occur in studying the Yangian double with centreDY(ŝlN ): the
DY(ŝlN ) can be considered as some scaling limit of theUq(ŝlN ) algebra.

We have only considered the ¯h-deformedWN algebra for genericξ . Whenξ is some
rational number (ξ = p/q, p and q are two coprime integers), the realization of the ¯h-
deformedWN algebra in the Fock spaceFl,k would be highly reducible and we have to
throw out some states from the Fock spaceFl,k to obtain the irreducible componentHl,k.
(Here we choose the same symbols as in [1]). ForN = 2, the irreducible spaceHl,k
(i.e. Ll,k in [12]) can be obtained by some BRST cohomology [12]. Unfortunately, the
constructure of the BRST complex and the calculation of cohomology for 36 N is still an
open problem.

We have also constructed the vertex operators of type I and type II. These vertex
operators satisfy some Fadeev–Zamolodchikov algebra with face type Boltzmann weight
as its constructure constant. In order to obtain the correlation functions as the traces of
products of these vertex operators, we need to introduce a boost operatorH ,

H =
N−1∑
j=1

∫ ∞
0

t2sh(ξh̄t/2)

sh((1+ ξ)h̄t/2)aj (−t)s
+
j (t) dt (66)

which enjoys the property

e2h̄HZµ(t) e−2h̄H = Zµ(t − 2ih̄) e2h̄HZ′µ(t) e−2h̄H = Z′µ(t − 2ih̄).

Moreover, using the skew-symmetric fusion ofN vertex operators, one can obtain some
invertibility for our vertex operators of the form such as (3.19) and (c.20) in [1]. Then the
correlation function can be described by the following trace function:

G(β1, . . . , βNn)µ1,...,µNn =
tr(e−2h̄HZ′µ1

(β1) . . . Z
′
µNn
(βNn))

tr(e−2h̄H )
. (67)
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